
Testing of ‘massively
parametrized problems’ -

Ilan Newman
Haifa University

Based on joint work with:
Sourav Chakraborty, Eldar Fischer, Shirley
Halevi, Oded Lachish, Arie Matsliah, Eyal

Rozenberg, Dekel Tzur, Orly Yahalom.

Standard Models

• A Fixed underlying structure. Inputs: a set
of ‘vectors’ assigned with this structure. E.g.,
a coloring of the points. Property: a
collection of ‘vectors’, : E.g.,

• Graph properties: Structure is Kn, input
(vectors): Boolean assignment on edges.
Property: e.g., connected graphs, bipartite
graphs...

• Properties of Boolean functions:
Structure: the Boolean cube. Inputs:
Boolean assignment of vertices.
Property: e.g., monotone, linear,….

• Here: Structure is not fixed in advance !
E.g., Structure: a given undirected graph,
inputs: all 0/1 assignments to its edges,
property: the subgraph is Eulerian,
connected,….

• Strongly connected, DAG, having a di-path
of length k….

• Structure: A given graph, inputs: all 0/1
assignments to its vertices. Properties:
graph properties of the induced subgraph.

• Structure: A Boolean circuit/
formula/ branching program…, inputs:
Boolean assignment to the variables.
Property: the 1-inputs of the
computation.

• There are many more examples….

Comments on ‘standard’ models,
e.g., graph properties

• [GT01]: Every 1-sided error testable
property is testable by a generic
algorithm: An algorithm that queries
at random a subgraph of a given size
and accept/reject only based on it.

• Thus, algorithm are somewhat ‘not
interesting’.

• [AFNS] A characterization of all
testable graph properties in terms of
regular partitions.

• In massively parametrized graph
properties:

• Typically, there is a ‘significant’ place
for preprocessing the structure.

• Algorithms turns out to be quite
different from the ‘standard’
sampling.

Some ‘old’ results

• [N00] testing membership in read-once
constant width Branching programs.

• [FLNRRS02] – testing monotonicity in
‘general’ posets.

Subgraphs porperties

• Structure: A given arbitrary underlying
graph G=(V,E). Algorithm has full
knowledge of G.

• Inputs: (Boolean) assignment on the
edges (vertices). Hence a property P is a
subset of {0,1}E .

P can be interpreted is several ways:

subgraph porperties
The edge assignment is interpreted as its

existence /non existence. Thus an input
defines a subgraph G containing the edges
of value ‘1’.

Hence, a property is a collection of
subgraphs, e.g:

Being bipartite (k-colorable), Eulearian,
Hamiltonian, being acyclic etc.

Orientations porperties
The edge assignment is interpreted as an

orientation of it. Hence, a property is a
collection of directed graphs obtained by
orienting the edges of G in certain ways.

e.g:

Being strongly connected, Eulearian, having
an s-t path, being acyclic, excluding a
forbidden subgraph etc.

Properties of constraint graphs
Structure: An arbitrary undirected graph,

and Boolean formulae φv, for every vertex
v in G, on variables that are indexed by
the adjacent edges to v.

Inputs: Boolean assignment to the variables.

Property: assignments that satisfy φv for
every vertex v.

Examples

• the vertex formulae assert that the
number of ‘1’-edges is even (Eulerian).

• A 2-coloring of the edges s.t not all
edges adjacent to a vertex have the same
value.

Motivation

• The constraint graph model is fairly
general, any property problem can be cast
in this way.

• The subgraph model directly generalizes
the dense graph model. Gives the
possibility to consider sparse graphs in a
way that the representation remains
simple.

• One can pose interesting problems.

• The algorithms are interesting (not just
sampling, not just local search).

Connection to other testing problems:
Testing satisfying assignment of CNF
formulae.

• [BHR] 3CNF are generally hard to test,
even if every variable appears O(1) times.

• [FLNRRS] 2CNF are also hard, even if
monotone (By testing monotonicity).

• If monotone and every variable appears
O(1) times – testable.

• Read-twice CNF are testable – reduction
from a result on orientation/constraint
graphs.

This works for the combination of:
every monotone variable appears O(1)
times and every non-monotone
appears 2 times.

Read-O(1)-times is not testable in
general.

Testing constraint graphs

[HLNT CCC07]

• Every property can be cast in this way
(star).

• A constraint graph is in LD3 if for every
vertex with degree at least 3, the
hamming distance between any two
assignments not satisfying φv is at least 3.
e.g: φv is a clause of size 3 or more.

• Thm: Every LD3 has an (, exp(1/ ))
1-sided error test.

• Cor: Every read-twice CNF formula is
testable.

• Algorithm: non-trivial sampling. Proof is
quite technical.

• Best possible; there are properties in
which two non-sat assignments have
dist=2 and are highly non-testable.
Similarly for read-3-times CNF’s.

•

• Cor: the property of orientation of
having no source vertex is testable.

The property of edge 2-coloring in
which not all edges have the same
color is testable.

Algorithm flavour

• Define a suitable neighborhood B(z),
around each vertex z.

• Algorithm for the ‘generic’ case:

- Select a random edge e.

- for each vertex z such that e is in B(z),
and z has suitably bounded degree, test all
edges adjacent to z and reject if z is not
satisfied.

Testing of Orientations

[HLNT ECCC06, CFLMN Random07, FLMNY
Random08].

Testing H-freeness
• For underlying graphs with bounded

degree, being H-free is testable for any
fixed forbidden directed graph H, that
has no source or has no drain.

• For forbidden graphs with sources and
drains: P2-free is testable while P3-free
is highly non-testable.

• What about testing H-freeness in
input graphs of unbounded average
degree ?

• If testable, algorithm is not
poly(1/ ).

Testing strong connectivity

Easy cases:

• G has ω(n) edges.

• The DAG of components has Ω(n)
sources.

• Def: An undirected graph G=(V,E) is called
δ -efficiently-Steiner connected if for
every S V, |S|< δ2n there is a connected
subgraph T=(V,E’) of G spanning S, with
|E’| < 10 δn .

• Thm: If G is 1/log n -efficiently Steiner
connected then strong conn. is testable
for G.

• SC is testable for nxn grid.

• SC is testable on expanders.

Testing s-t connectivity

• Testing s-t connectivity can be
efficiently done for any underlying
graph.
- Algorithm is non-trivial. It uses
several reduction steps to testing
small width branching programs.

• Testing Eulerianity: Not testable in
general. However, there are sublinear
testing algorithms and quite efficient for
certain classes of graphs.

Some general lower bounds for
non-adaptive 1-sided error

algorithms

[FLNR on-going work]

Consider the property of subgraphs of
being bipartite. A 1-sided error algorithm
needs to find a refutation in order to
reject. Here a witness is an odd-cycle.

Hence, the size of the refutation is a lower
bound. However, this is quite weak.

• Let G=(V,E) be an expander graph, with
girth = Ω(log n).

• Refutation size is O(log n).

• Can prove: non-adaptive lower bound of
Ω(nδ), for some fixed δ>0.

This is quite general; the same technique
gives lower bound for testing acyclicity,
testing any property in which a
refutation contains a ‘large’ path, or a
cycle.

E.g., any (non-trivial) minor-H-free graph
for a given H, e.g., planarity.

• [FL….. – on going]: membership in
read-once formulae is testable.

• Extensions to non-boolean case

