
Testing of ‘massively 
parametrized problems’ -

Ilan Newman
Haifa University

Based on joint work with:
Sourav Chakraborty, Eldar Fischer, Shirley 
Halevi, Oded Lachish, Arie Matsliah, Eyal

Rozenberg, Dekel Tzur, Orly Yahalom.



Standard Models

• A Fixed underlying structure. Inputs: a set 
of ‘vectors’ assigned with this structure. E.g., 
a coloring of the points. Property: a 
collection of ‘vectors’, : E.g., 

• Graph properties: Structure is Kn, input 
(vectors): Boolean assignment on edges. 
Property: e.g., connected graphs, bipartite 
graphs...



• Properties of Boolean functions: 
Structure: the Boolean cube. Inputs:  
Boolean assignment of vertices. 
Property: e.g., monotone, linear,….



• Here: Structure is not fixed in advance !
E.g., Structure: a given undirected graph, 
inputs: all 0/1 assignments to its edges, 
property: the subgraph is Eulerian, 
connected,…. 

• Strongly connected, DAG, having a di-path 
of length k….

• Structure: A given graph, inputs: all 0/1 
assignments to its vertices. Properties:
graph properties of the induced subgraph.



• Structure: A Boolean circuit/ 
formula/ branching program…, inputs: 
Boolean assignment to the variables.  
Property: the 1-inputs of the 
computation.

• There  are many more examples….



Comments on ‘standard’ models, 
e.g., graph properties

• [GT01]: Every 1-sided error testable 
property is testable by a generic
algorithm:  An algorithm that queries 
at random a subgraph of a given size 
and accept/reject only based on it.

• Thus, algorithm are somewhat ‘not 
interesting’.



• [AFNS] A characterization of all 
testable graph properties in terms of 
regular partitions. 

• In massively parametrized graph 
properties:  

• Typically, there is a ‘significant’ place 
for preprocessing the structure. 

• Algorithms turns out to be quite 
different from the ‘standard’ 
sampling.



Some ‘old’ results 

• [N00]  testing membership in read-once 
constant width Branching programs.

• [FLNRRS02] – testing monotonicity in 
‘general’  posets.



Subgraphs porperties

• Structure: A given arbitrary underlying 
graph G=(V,E). Algorithm has full 
knowledge of G.

• Inputs: (Boolean) assignment on the 
edges (vertices). Hence a property P is a 
subset of {0,1}E . 

P can be interpreted is several ways:



subgraph porperties
The edge assignment is interpreted as its 

existence /non existence. Thus an input 
defines a subgraph G containing the edges 
of value ‘1’. 

Hence, a property is a collection of  
subgraphs, e.g:

Being bipartite (k-colorable), Eulearian, 
Hamiltonian, being acyclic etc.



Orientations porperties
The edge assignment is interpreted as an 

orientation of it. Hence, a property is a 
collection of directed graphs obtained by 
orienting the edges of G in certain ways.

e.g:

Being strongly connected, Eulearian, having 
an s-t path, being acyclic, excluding a 
forbidden subgraph etc.



Properties of constraint graphs
Structure:  An arbitrary undirected graph, 

and Boolean formulae φv, for every vertex 
v in G,  on variables that are indexed by 
the adjacent edges to v. 

Inputs: Boolean assignment to the variables. 

Property: assignments that satisfy φv for 
every vertex v.



Examples

• the vertex formulae assert that  the 
number of ‘1’-edges is even (Eulerian).

• A 2-coloring of the edges s.t not all 
edges adjacent to a vertex have the same 
value.



Motivation

• The constraint graph model is fairly 
general, any property problem can be cast 
in this way.

• The subgraph model directly generalizes 
the dense graph model. Gives the 
possibility to consider sparse graphs in a 
way that the representation remains 
simple. 

• One can pose interesting problems.

• The algorithms are interesting (not just 
sampling, not just local search).



Connection to other testing problems: 
Testing satisfying assignment of CNF 
formulae.

• [BHR] 3CNF are generally hard to test, 
even if every variable appears O(1) times.

• [FLNRRS] 2CNF are also hard, even if 
monotone (By testing monotonicity).

• If monotone and every variable appears 
O(1) times – testable.

• Read-twice CNF are testable – reduction 
from a result on orientation/constraint 
graphs.



This works for the combination of: 
every monotone variable appears O(1) 
times and every non-monotone 
appears 2 times.

Read-O(1)-times is not testable in 
general.



Testing constraint graphs 

[HLNT  CCC07]

• Every property can be cast in this way 
(star).

• A constraint graph is in LD3 if for every 
vertex with degree at least 3, the 
hamming distance between any two 
assignments not satisfying φv is at least 3.
e.g: φv  is a clause of size 3 or more. 

• Thm:  Every LD3 has an (, exp(1/ )) 
1-sided error test.



• Cor: Every read-twice CNF formula is 
testable.

• Algorithm: non-trivial sampling. Proof is 
quite technical.

• Best possible; there are properties in 
which two non-sat assignments have 
dist=2 and are highly non-testable. 
Similarly for read-3-times CNF’s.

•



• Cor: the property of orientation of 
having no source vertex is testable.  

The property of edge 2-coloring in 
which not all edges have the same 
color is testable. 



Algorithm flavour

• Define a suitable neighborhood B(z), 
around each vertex z.

• Algorithm for the ‘generic’ case:

- Select a random edge e.

- for each vertex z such that e is in B(z), 
and z has suitably bounded degree, test all 
edges adjacent to z and reject if z is not 
satisfied. 



Testing of Orientations

[HLNT ECCC06, CFLMN Random07, FLMNY 
Random08].

Testing H-freeness
• For underlying graphs with bounded 

degree, being H-free is testable for any 
fixed forbidden directed graph H, that 
has no source or has no drain.  

• For forbidden graphs with sources and 
drains: P2-free is testable while P3-free 
is highly non-testable.



• What about testing H-freeness in 
input graphs of unbounded average 
degree ?

• If testable, algorithm is not 
poly(1/ ).



Testing strong connectivity

Easy cases:

• G has ω(n) edges.

• The DAG of components has  Ω(n) 
sources. 



• Def: An undirected graph G=(V,E) is called 
δ -efficiently-Steiner connected if for 
every S V,  |S|< δ2n there is a connected
subgraph T=(V,E’) of G spanning S, with 
|E’| < 10 δn .

• Thm: If G is 1/log n -efficiently Steiner 
connected then strong conn. is testable 
for G.

• SC is testable for nxn grid.

• SC   is testable on expanders.



Testing s-t connectivity

• Testing s-t connectivity can be 
efficiently done for any underlying 
graph.
- Algorithm is non-trivial. It uses 
several reduction steps to testing 
small width branching programs. 



• Testing Eulerianity:  Not testable in 
general. However, there are sublinear
testing algorithms and quite efficient for 
certain classes of graphs.



Some general lower bounds for 
non-adaptive 1-sided error 

algorithms

[FLNR on-going work]

Consider the property of subgraphs of 
being bipartite.  A 1-sided error algorithm 
needs to find a refutation in order to 
reject.  Here a witness is an odd-cycle. 

Hence, the size of the refutation is a lower 
bound. However, this is quite weak.



• Let G=(V,E) be an expander graph, with 
girth = Ω(log n). 

• Refutation size is O(log n).

• Can prove: non-adaptive lower bound of 
Ω(nδ), for some fixed δ>0.



This is quite general; the same technique 
gives lower bound for testing acyclicity, 
testing any  property in which a 
refutation contains a ‘large’ path, or a 
cycle. 

E.g., any (non-trivial) minor-H-free graph 
for a given H, e.g., planarity. 



• [FL….. – on going]: membership in  
read-once formulae is testable.

• Extensions to non-boolean case


